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If we write Eq. (2) in 
d-dimensional spherical coordi-
nates, factor f in its roots m1, m2 
and m3, transform to s=r-R(t), and 
assume a shape preserving 
interface, we can transform4,5 Eq. 
(2) into two ordinary differential 
equations and solve these analyti-
cally, leading to a solution for the 
propagation of the front

with Rc the critical nucleus size,

and a solution for the m-profile

Approximations
So we can calculate ∂m/∂t analyti-
cally from u(R) so that we only have 
to solve the thermal diffusion 
equation

And the front propagation equation

where m1, m2 and m3, depend on 
u(R).
This scheme is much faster to 
integrate and more stable, using the 
Crank-Nicholson method it only 
involves solving a tridiagonal 
equation each time step.

Results

. Heating up of the already converted part of 
the system to either near u=0 or to u=∆u+1
. Growing to beyond where surface energy is 
of importance (most important for very low 
undercooling and >1D systems)

. The order parameter goes through a 
transient before growth follows a power law 
R ∝ t n

. Two processes in the transient:
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Latent heat3

A first order change of phase generates 
latent heat:

Latent heat increases temperature u(R), 
slowing down growth. L enters the p.d.e. 
for thermal diffusion as a source term:

Hence we have two coupled, nonlinear 
p.d.e.'s:

Where the equations are scaled so that a 
change of phase ∆m=1 increases the 
temperature by ∆u=1.

Usually one integrates the two 
coupled p.d.e.'s numerically. This 
can become very expensive. We 
have devised a different scheme.

Phase field approach3

Expand local free energy f as a function of an 
order parameter m and temperature 
u=cp(T-T0)/L:
Order parameter m evolves to minimize total 
free energy:

where F is given by the local f and a surface 
energy part

functional derivation of (1) gives a p.d.e. for 
order parameter evolution:

The solution m(r,t) for spherical symmetry is a 
moving tanh profile centered at R(t), with an 
approximately fixed width.

TOP: Landau expansion of the free energy 
density for a first order phase transition, 
depicted for different temperatures.

BOTTOM: Typical order parameter profile 
m(r) (a) and corresponding free energy 
density (b) for a system with T<T0
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LEFT: For undercooling -1<∆u<0 the latent heat 
warms the interface up to near the coexistence 
temperature u=0. The growth is limited by thermal 
diffusion, and therefore R will eventually  grow as 
R∝ t1/2

RIGHT: for undercooling ∆u<-1 the temperature at 
the front approaches a finite value u=∆u+1, and 
domains will grow as  R∝ t1

TOP: Position of order parameter front R as a function of time for different 
values of the undercooling ∆u. Note that more undercooling means faster 
growth. 

BOTTOM: Power of growth n as found from fitting R ∝ t n to the data in 
the top figure. The thick purple line denotes the asymptotic value, n=1 for 
∆u<-1 and n=1/2 for 0<∆u<-1. The high value of n for low undercoolings is 
due to the surface energy term dominating the transient in this regime. The 
measured curve will resemble the asymptotic curve more and more for 
longer experiment times.
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Motivation
. In the isotropic to nematic transition of 
liquid Crystals (LC's) the power of domain 
growth R ∝ t n has been found1,2 to depend 
on the amount of undercooling ∆T=T-T0. The radius of a nematic domain grows as 
R ∝ t 1/2 into the undercooled isotropic 
phase for low undercooling.
. Growth R ∝ t  for high undercooling. 

quench rate 3 K min -1
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RIGHT: Nematic germs of PCH5 growing out of the 
isotropic phase. In the lower right corner of each picture the 
time after the temperature quench is given. The quench 
depth ∆T =Tstart - Tend is 0.15K. 
Figure and caption taken from ref. 1

LEFT: Experimentally determined growth exponent n as a 
function of quench depth ∆T. Errors are in the order of the 
size of
the symbols. The data confirm the theoretically predicted 
change of n=1/2 for ∆T=0 K to ng1 for large quench 
depths.
Figure and caption adapted from ref. 2

Conclusions
. For low undercooling the asymptotic 
behavior is R ∝ t 1/2, whereas for high 
undercooling the asymptotic behavior is 
R ∝ t 1

. However for experimental conditions 
the asymptotic regime is often not 
obtainable, and a transient is measured.

. For very low undercooling the transient 
is dominated by the surface energy, and 
asymptotic behavior sets in much later.

Outlook
. We will use a more 
conventional form of the 
Landau free energy 
expansion.
. Study in a larger range of 
parameters describing 
different material 
properties.
. Study the effect of a 
small magnetic field to the 
transient behavior
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. This has not been found experimen-
tally, and inspires further research.


