

Kinetics of liquid crystal phase transitions: A phase field approach Bastiaan A.H. Huisman^{1,*}, Annalisa Fasolino^{1,2}

¹ Van 't Hoff Institute for Molecular Sciences, University of Amsterdam. Nieuwe Achtergracht 166, 1018 WV Amsterdam.

UNIVERSITY OF AMSTERDAM

² Theoretical Physics, Institute for Molecules and Materials, Radboud University Nijmegen. Toernooiveld 1, 6525 ED Nijmegen.

huisman@science.uva.nl

Motivation

Phase field approach

 Liquid Crystals (LC's) isotropic to nematic phase transition: Nematic domains experimentally^{1,2} found to grow as $R \propto t^{1/2}$ into undercooled isotropic phase.

 Diamagnetic LC's found^{1,2} to grow faster in high magnetic fields. Possibly with different, higher power.

 Reason for faster growth unknown.

 $\dot{R} \propto t^{-1/2}$

- Isotropic to nematic phase transition is weakly first order.
- Time scales of thermal diffusion and order parameter kinetics are 5 orders apart³.

Order parameter m evolves to minimize free energy: $\frac{\partial m}{\partial t} = -\Gamma \frac{\delta F[m(\vec{r}), u(\vec{r})]}{\delta m}$

where F is given by a local (see figure) and a surface energy part³ $F[m(\vec{r}), u(\vec{r})] = \int \left\{ f[m(\vec{r}), u(\vec{r})] + \frac{\xi_m^2}{2} \left(\nabla m(\vec{r}) \right)^2 \right\} dV$ $f(m,u) = m^{2}(m-1)^{2} + \frac{1}{2}\delta um \quad u = \frac{c_{p}}{L}(T-T_{0})$

functional derivation gives: $\frac{\partial m}{\partial t} = \frac{\xi^2}{2} \nabla^2 m - 2m(m-1)(2m-1) - \frac{1}{2}\delta u$

Phase change enters as heat source in heat equation: $\frac{\partial u}{\partial t} = D_T \frac{\partial^2 u}{\partial x^2} + \frac{\partial m}{\partial t}$ Such that the latent heat is:

 $L = T_0 \left(\left. \frac{\partial F}{\partial T} \right|_{m=0} - \left. \frac{\partial F}{\partial T} \right|_{m=1} \right)$

Solving the equations

Equations discretized by finite differences. Time integration by series expansion.

 $\frac{\partial m}{\partial t} = g(m)$

 $\frac{m(t_{i+1}) - m(t_i)}{1} \approx g(m(t_i)) + \frac{1}{2}$ Δt $\frac{1}{2} \left. \frac{\partial g}{\partial m} \right|_{t_i} \left(m(t_{i+1}) - m(t_i) \right)$

Two regimes

Low undercooling or slow thermal diffusion: latent heat increases interface temperature towards T_{Ω} . The dynamics of the order parameter front Ris dominated by thermal diffusion: $R \propto t^{-1/2}$

Liquid crystals

 $\frac{\partial m}{\partial t} = \frac{1}{2}\nabla^2 m - 2m(m-1)(2m-1) - \frac{1}{2}\delta u$ $\frac{\partial u}{\partial t} = \frac{1}{2p} \nabla^2 u + \frac{\partial m}{\partial t} \qquad \qquad \delta = \frac{2}{\psi} \frac{L}{k_B T_0} \frac{L}{c_p T_0} \quad p \equiv \frac{\xi_m^2 / \tau_m}{D_T} = \frac{D_m}{D_T}$

Determining Exponents Assume: $\dot{R} \propto t^{\nu}$ then: $\frac{d \log \left(\dot{R} \right)}{d \log \left(t \right)} = \nu$

Asymptotic behavior

Exponent fitted to

High undercooling or fast thermal diffusion: order parameter front propagates at constant velocity: $R \propto t$. Interface temperature approximately constant.

Boundaries

The boundary conditions act as a 10⁻ thermostat, keeping the systems $\ddot{\ominus}$ boundaries at a fixed

Conclusions

 Nematic domains experimentally found to grow into isotropic undercooled liquid as powerlaw $\dot{R} \propto t^{\nu}$ where $\nu = -0.5$.

Remaining...

 10^{4}

 Neighbouring domains. Can latent heat stall growth?

temperature.

Once the u-profile widenes beyond the system size, the growth exponent changes.

Temperature profile for a system with nearby boundaries kept at the undercooling temperature. Note the difference before and after the field widened to the system size.

Growth exponent for increasing p and increasing system size. When temperature profile width exceeds the system size, the exponent grows.

Liquid crystals

Temperature field width fitted for systems with far away boundaries. Extrapolated for parameters describing 8CB, found to be approx. 25 cm: much larger than experimental set up.

nctitite tor

Phase field equations difficult to integrate in range of parameters suitable for liquid crystals. Extrapolation necessary.

• In the estimated time t_0 for the powerlaw behavior to set in, the thermal profile of liquid crystals is estimated to be around 25cm wide.

• Experimental set up much smaller: therefore exponent expected to be higher: $\nu > -0.5$

AC11 9t

• Can we get $\dot{R} \propto t^{-0.5}$ without temperature field? The effect of dimensionality on the time t_0 (spherical coords.). Coupling to magnetic field.

References

¹ G. Tordini, P.C.M. Christianen, J.C. Maan. cond-mat/0408208 ² G. Tordini, private communication. ³ H. Löwen, J. Bechhoefer, L.S. Tuckerman. Phys. Rev. Lett. **45**, 2399 (1992).

ciphcpc